Le Chatelier's Principle Fundamentals (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    96656
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Le Chatelier's principle states that if a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish an equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. This page covers changes to the position of equilibrium due to such changes and discusses briefly why catalysts have no effect on the equilibrium position.

    Introduction

    An action that changes the temperature, pressure, or concentrations of reactants in a system at equilibrium stimulates a response that partially offsets the change while a new equilibrium condition is established (2). Hence, Le Châtelier's principle states that any change to a system at equilibrium will adjust to compensate for that change. In 1884 the French chemist and engineer Henry-Louis Le Châtelier proposed one of the central concepts of chemical equilibria, which describes what happens to a system when something briefly removes it from a state of equilibrium.

    It is important to understand that Le Châtelier's principle is only a useful guide to identify what happens when the conditions are changed in a reaction in dynamic equilibrium; it does not give reasons for the changes at the molecular level (e.g., timescale of change and underlying reaction mechanism).

    Concentration Changes

    Le Châtelier's principle states that if the system is changed in a way that increases the concentration of one of the reacting species, it must favor the reaction in which that species is consumed. In other words, if there is an increase in products, the reaction quotient, \(Q_c\), is increased, making it greater than the equilibrium constant, \(K_c\). Consider an equilibrium established between four substances, \(A\), \(B\), \(C\), and \(D\):

    \[ A + 2B \rightleftharpoons C + D\]

    Increasing a concentration

    What happens if conditions are altered by increasing the concentration of A?

    According to Le Châtelier, the position of equilibrium will move in such a way as to counteract the change. In this case, the equilibrium position will move so that the concentration of A decreases again by reacting it with B to form more C and D. The equilibrium moves to the right (indicated by the green arrow below).

    Le Chatelier's Principle Fundamentals (2)

    In a practical sense, this is a useful way of converting the maximum possible amount of B into C and D; this is advantageous if, for example, B is a relatively expensive material whereas A is cheap and plentiful.

    Decreasing a concentration

    In the opposite case in which the concentration of A is decreased, according to Le Châtelier, the position of equilibrium will move so that the concentration of A increases again. More C and D will react to replace the A that has been removed. The position of equilibrium moves to the left.

    Le Chatelier's Principle Fundamentals (3)

    This is essentially what happens if one of the products is removed as soon as it is formed. If, for example, C is removed in this way, the position of equilibrium would move to the right to replace it. If it is continually removed, the equilibrium position shifts further and further to the right, effectively creating a one-way, irreversible reaction.

    Pressure Changes

    This only applies to reactions involving gases, although not necessarily all species in the reaction need to be in the gas phase. A general hom*ogeneous gaseous reaction is given below:

    \[ A(g) + 2B(g) \rightleftharpoons C(g) + D(g)\]

    Increasing the pressure

    According to Le Châtelier, if the pressure is increased, the position of equilibrium will move so that the pressure is reduced again. Pressure is caused by gas molecules hitting the sides of their container. The more molecules in the container, the higher the pressure will be. The system can reduce the pressure by reacting in such a way as to produce fewer molecules.

    Le Chatelier's Principle Fundamentals (4)

    In this case, there are three moles on the left-hand side of the equation, but only two on the right. By forming more C and D, the system causes the pressure to reduce. Increasing the pressure on a gas reaction shifts the position of equilibrium towards the side with fewer moles of gas molecules.

    Example 1: Haber Process

    \[ N_2 + 3H_2 \rightleftharpoons 2NH_3 \]

    If this mixture is transferred from a 1.5 L flask to a 5 L flask, in which direction does a net change occur to return to equilibrium?

    Solution

    Because the volume is increased (and therefore the pressure reduced), the shift occurs in the direction that produces more moles of gas. To restore equilibrium the shift needs to occur to the left, in the direction of the reverse reaction.

    Decreasing the pressure

    The equilibrium will move in such a way that the pressure increases again. It can do that by producing more gaseous molecules. In this case, the position of equilibrium will move towards the left-hand side of the reaction.

    Le Chatelier's Principle Fundamentals (5)

    What happens if there are the same number of molecules on both sides of the equilibrium reaction?

    In this case, increasing the pressure has no effect on the position of the equilibrium. Because there are equal numbers of molecules on both sides, the equilibrium cannot move in any way that will reduce the pressure again. Again, this is not a rigorous explanation of why the position of equilibrium moves in the ways described. A mathematical treatment of the explanation can be found on this page.

    Summary of Pressure Effects

    Three ways to change the pressure of an equilibrium mixture are: 1. Add or remove a gaseous reactant or product, 2. Add an inert gas to the constant-volume reaction mixture, or 3. Change the volume of the system.

    1. Adding products makes \(Q_c\) greater than \(K_c\). This creates a net change in the reverse direction, toward reactants. The opposite occurs when adding more reactants.
    2. Adding an inert gas into a gas-phase equilibrium at constant volume does not result in a shift. This is because the addition of a non-reactive gas does not change the partial pressures of the other gases in the container. While the total pressure of the system increases, the total pressure does not have any effect on the equilibrium constant.
    3. When the volume of a mixture is reduced, a net change occurs in the direction that produces fewer moles of gas. When volume is increased the change occurs in the direction that produces more moles of gas.

    Temperature Changes

    To understand how temperature changes affect equilibrium conditions, the sign of the reaction enthalpy must be known. Assume that the forward reaction is exothermic (heat is evolved):

    Le Chatelier's Principle Fundamentals (6)

    In this reaction, 250 kJ is evolved (indicated by the negative sign) when 1 mole of A reacts completely with 2 moles of B. For reversible reactions, the enthalpy value is always given as if the reaction was one-way in the forward direction. The back reaction (the conversion of C and D into A and B) would be endothermic, absorbing the same amount of heat.

    Le Chatelier's Principle Fundamentals (7)

    The main effect of temperature on equilibrium is in changing the value of the equilibrium constant.

    Temperature is Neither a Reactant nor Product

    It is not uncommon that textbooks and instructors to consider heat as a independent "species" in a reaction. While this is rigorously incorrect because one cannot "add or remove heat" to a reaction as with species, it serves as a convenient mechanism to predict the shift of reactions with changing temperature. For example, if heat is a "reactant" (\(\Delta{H} > 0 \)), then the reaction favors the formation of products at elevated temperature. Similarly, if heat is a "product" (\(\Delta{H} < 0 \)), then the reaction favors the formation of reactants. A more accurate, and hence preferred, description is discussed below.

    Increasing the temperature

    If the temperature is increased, then the position of equilibrium will move so that the temperature is reduced again. Suppose the system is in equilibrium at 300°C, and the temperature is increased 500°C. To cool down, it needs to absorb the extra heat added. In the case, the back reaction is that in which heat is absorbed. The position of equilibrium therefore moves to the left. The new equilibrium mixture contains more A and B, and less C and D.

    Le Chatelier's Principle Fundamentals (8)

    If the goal is to maximize the amounts of C and D formed, increasing the temperature on a reversible reaction in which the forward reaction is exothermic is a poor approach.

    Decreasing the temperature?

    The equilibrium will move in such a way that the temperature increases again. Suppose the system is in equilibrium at 500°C and the temperature is reduced to 400°C. The reaction will tend to heat itself up again to return to the original temperature by favoring the exothermic reaction. The position of equilibrium will move to the right with more \(A\) and \(B\) converted into \(C\) and \(D\) at the lower temperature:

    Le Chatelier's Principle Fundamentals (9)

    Example 2

    Consider the formation of water

    \[O_2 + 2H_2 \rightleftharpoons 2H_2O\;\;\; \Delta{H}= -125.7\, kJ\]

    1. What side of the reaction is favored? Because the heat is a product of the reaction, the reactants are favored.
    2. Would the conversion of \(O_2\) and \(H_2\) to \(H_2O\) be favored with heat as a product or as a reactant? Heat as a product would shift the reaction forward, creating \(H_2O\). The more heat added to the reaction, the more \(H_2O\) created

    Summary of Temperature Effects

    • Increasing the temperature of a system in dynamic equilibrium favors the endothermic reaction. The system counteracts the change by absorbing the extra heat.
    • Decreasing the temperature of a system in dynamic equilibrium favors the exothermic reaction. The system counteracts the change by producing more heat.

    Catalysts

    Adding a catalyst makes absolutely no difference to the position of equilibrium, and Le Châtelier's principle does not apply. This is because a catalyst speeds up the forward and back reaction to the same extent and adding a catalyst does not affect the relative rates of the two reactions, it cannot affect the position of equilibrium.

    However, catalysts have some application to equilibrium systems. For a dynamic equilibrium to be set up, the rates of the forward reaction and the back reaction must be equal. This does not happen instantly and for very slow reactions, it may take years! A catalyst speeds up the rate at which a reaction reaches dynamic equilibrium.

    Example 3

    You might try imagining how long it would take to establish a dynamic equilibrium if you took the visual model on the introductory page and reduced the chances of the colors changing by a factor of 1000 - from 3 in 6 to 3 in 6000 and from 1 in 6 to 1 in 6000. Starting with blue squares, by the end of the time taken for the examples on that page, you would most probably still have entirely blue squares. Eventually, though, you would end up with the same sort of patterns as before - containing 25% blue and 75% orange squares.

    Problems

    1. Varying Concentration
    What will happen to the equilibrium when more 2SO2 (g) is added to the following system?

    \[2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3 (g) \]

    Solution:
    Adding more reactants shifts the equilibrium in the direction of the products; therefore, the equilibrium shifts to the right.
    Overall, the concentration of \(2SO_2\) from initial equilibrium to final equilibrium will increase because only a portion of the added amount of \(2SO_2\) will be consumed.
    The concentration of \(O_2\) will decrease because as the equilibrium is reestablished, \(O_2\) is consumed with the \(2SO_2\) to create more \(2SO_3\). The concentration of \(2SO_3\) will be greater because none of it is lost and more is being generated.

    2. Varying Pressure
    What will happen to the equilibrium when the volume of the system is decreased?

    \[2SO_{2(g)} + O_{2 (g)} \rightleftharpoons 2SO_{3 (g)}\]

    Solution:
    Decreasing the volume leads to an increase in pressure which will cause the equilibrium to shift towards the side with fewer moles. In this example there are 3 moles on the reactant side and 2 moles on the product side, so the new equilibrium will shift towards the products (to the right).

    3. Varying Temperature
    What will happen to the equilibrium when the temperature of the system is decreased?

    \[N_{2(g)} + O_{2 (g)} \rightleftharpoons 2NO_{(g)} \;\;\;\; \Delta{H} = 180.5\; kJ\]

    Solution
    Because \(\Delta{H}\) is positive, the reaction is endothermic in the forward direction. Removing heat from the system forces the equilibrium to shift towards the exothermic reaction, so the reverse reaction will occur and more reactants will be produced.

    References

    1. Pauling, L., College Chemistry, 3rd ed., Freeman, San Francisco, CA, 1964.
    2. Petrucci, R., Harwood, W., Herring, F., Madura, J., General Chemistry, 9th ed., Pearson, New Jersey, 1993.
    3. www.jce.divched.org/Journal/I...2N08/p1190.pdf
    4. Huddle, Benjamin P. "Conceptual Questions" on LeChatelier's Principle." J. Chem. Educ.1998 75 1175.
    5. Thomsen, Volker B. E. " Le Chatelier's Principle in the Sciences." J. Chem. Educ. 2000 77 173.

    Contributors and Attributions

    Le Chatelier's Principle Fundamentals (2024)

    FAQs

    What general principle can you use to guide how adding heat will affect an equilibrium? ›

    When heat is added to endothermic reactions, the equilibrium will shift to the right according to Le Chatelier's Principle and when heat is added to exothermic reaction the equilibrium shifts to the left. This is because in an endothermic reaction, heat can be treated as a reactant.

    What is the answer to the Le Chatelier's principle? ›

    Le Chatelier's principle can be stated as follows: A change in one of the variables that describe a system at equilibrium produces a shift in the position of the equilibrium that counteracts the effect of this change.

    Which of the answer choices correctly describes Le Chatelier's principle? ›

    Final answer: The correct description of Le Châtelier's principle is that a system at chemical equilibrium will adjust to changes by shifting in a direction to regain equilibrium.

    What is the Le Chatelier's principle long answer? ›

    Le Châtelier's principle states that if a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish an equilibrium.

    Does Le Chatelier's principle only apply to gases? ›

    This only applies to reactions involving gases: What would happen if you changed the conditions by increasing the pressure? According to Le Chatelier, the position of equilibrium will move in such a way as to counteract the change.

    What are the factors affecting equilibrium Le Chatelier's principle? ›

    The principle of Le Chatelier is an observation regarding the chemical equilibria of processes. It asserts that changes in a system's temperature, pressure, volume, or concentration will cause predictable and opposing changes in order to attain a new equilibrium state.

    What is an example of Le Chatelier's principle in chemical equilibrium? ›

    The classic example of the practical use of the Le Chatelier principle is the Haber-Bosch process for the synthesis of ammonia, in which a balance between low temperature and high pressure must be found.

    Which way will the equilibrium shift Le Chatelier's principle? ›

    If the concentration of a substance is increased, the reaction that consumes that substance is favored, and the equilibrium shifts away from that substance. If the concentration of a substance is decreased, the reaction that produces that substance is favored, and the equilibrium shifts toward that substance.

    What is the Le Chatelier's principle of reaction rates and equilibrium? ›

    The description of how a system responds to a stress to equilibrium has become known as Le Châtelier's principle: When a chemical system that is at equilibrium is disturbed by a stress, the system will respond in order to relieve the stress.

    What is simple Le Chatelier's principle? ›

    General statements of Le Chatelier's principle

    It states that changes in the temperature, pressure, volume, or concentration of a system will result in predictable and opposing changes in the system in order to achieve a new equilibrium state.

    Why is Le Chatelier's principle important? ›

    Le Chatelier's Principle helps to predict what effect a change in temperature, concentration or pressure will have on the position of the equilibrium in a chemical reaction. This is very important, particularly in industrial applications, where yields must be accurately predicted and maximised.

    How does Le Chatelier's principle apply to real life? ›

    Many industrial processes use Le Chatelier's principle to help increase yield but often use compromise conditions. These balance high yield with cost and rate of reaction. Methanol, ethanol, sulphuric acid and ammonia production are all examples of reversible reactions in industry that use Le Chatelier's principle.

    How would adding heat affect the equilibrium of the system? ›

    Increasing the temperature of a system in dynamic equilibrium favors the endothermic reaction. The system counteracts the change by absorbing the extra heat. Decreasing the temperature of a system in dynamic equilibrium favors the exothermic reaction. The system counteracts the change by producing more heat.

    What general principle can you use to guide how removing a product will affect an equilibrium? ›

    The formal statement is called Le Chatelier's principle: If an equilibrium is stressed, then the reaction shifts to reduce the stress. There are several ways to stress an equilibrium. One way is to add or remove a product or a reactant in a chemical reaction at equilibrium.

    How does increasing heat affect equilibrium? ›

    Increasing the temperature decreases the value of the equilibrium constant. Where the forward reaction is endothermic, increasing the temperature increases the value of the equilibrium constant. The position of equilibrium also changes if you change the temperature.

    How can you predict how the addition of heat will impact equilibrium? ›

    For changes in temperature, adding heat (increasing temperature) to an exothermic reaction will shift the equilibrium towards the reactants (endothermic direction) to absorb the added heat. Removing heat (decreasing temperature) will shift the equilibrium towards the products (exothermic direction) to release heat.

    Top Articles
    Closest Airport To Quincy Washington
    Which Universal Life Option Has A Gradually
    Busted Newspaper Birmingham Al
    Defense Immunity 2K23 Meaning
    Saydel Botanica
    What Is a Food Bowl and Why Are They So Popular?
    Haverhill, MA Obituaries | Driscoll Funeral Home and Cremation Service
    Nancy Pazelt Obituary
    The Dillards: From Mayberry's Darlings to Progressive Bluegrass Pioneers
    Sites Like SkiptheGames Alternatives
    New Haven Music Festival
    Tractorhouse Farm Equipment
    Www.jetnet.aa.com
    9xMovies: The Ultimate Destination for Free Movie Downloads
    Westgate Trailer Mountain Grove
    Scenes from Paradise: Where to Visit Filming Locations Around the World - Paradise
    O'reilly's Eastman Georgia
    Elfqrindiscard
    Vineland Daily Journal Obits
    Craigslist Swm
    Daves Supermarket Weekly Ad
    2013 Freightliner Cascadia Fuse Box Diagram
    Logisch werving en selectie B.V. zoekt een Supply Chain &amp; Logistics Engineer in Coevorden | LinkedIn
    Aunt Nettes Menu
    Lids Locker Room Vacaville Photos
    Accuweather Radar New York City
    Doculivery Cch
    Hyvee.com Login
    Panty Note Manga Online
    Warrior Badge Ability Wars
    Candy Land Santa Ana
    Gofish Dating
    Flight 1173 Frontier
    Seats 3D Ubs Arena
    Busty Bruce Lee
    Nycda Login
    What Do Manta Rays Eat In Ark
    Scarabaeidae), with a key to related species – Revista Mexicana de Biodiversidad
    Z93 Local News Monticello Ky
    Briggs And Stratton 125Cc Lawn Mower
    Kelly Chapman Husband
    1984 Argo JM16 GTP for sale by owner - Holland, MI - craigslist
    Southwest Flight 238
    Eliza Hay, MBA on LinkedIn: I’m happy to share that I’ve started a new position as Regional Director… | 36 comments
    Craiglist Horses For Sale
    What Time Does The Chase Bank Close On Saturday
    El Craigslist
    Wayfair Outlet Dayton Ohio
    Mets vs. Reds: Injury Report, Updates & Probable Starters – Sept. 7 - Bleacher Nation
    Edible Arrangements Track
    Having A Short Temper Nyt Crossword Clue
    Omaha World-Herald from Omaha, Nebraska
    Latest Posts
    Article information

    Author: Carmelo Roob

    Last Updated:

    Views: 5715

    Rating: 4.4 / 5 (45 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Carmelo Roob

    Birthday: 1995-01-09

    Address: Apt. 915 481 Sipes Cliff, New Gonzalobury, CO 80176

    Phone: +6773780339780

    Job: Sales Executive

    Hobby: Gaming, Jogging, Rugby, Video gaming, Handball, Ice skating, Web surfing

    Introduction: My name is Carmelo Roob, I am a modern, handsome, delightful, comfortable, attractive, vast, good person who loves writing and wants to share my knowledge and understanding with you.